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SHORT COMMUNICATION

A note on two upwind strategies for RBF-based grid-free schemes
to solve steady convection–diffusion equations

Y. V. S. S. Sanyasiraju∗,† and G. Chandhini

Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India

SUMMARY

In this paper, two radial basis function (RBF)-based local grid-free upwind schemes have been discussed
for convection–diffusion equations. The schemes have been validated over some convection–diffusion
problems with sharp boundary layers. It is found that one of the upwind schemes realizes the boundary
layers more accurately than the rest. Comparisons with the analytical solutions demonstrate that the local
RBF grid-free upwind schemes based on the exact velocity direction are stable and produce accurate
results on domains discretized even with scattered distribution of nodal points. Copyright q 2009 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The convection–diffusion plays a very significant role in fluid flow and heat transfer problems. This
process is peculiar in the sense that it is a combination of two dissimilar phenomena, convection
and diffusion. It can also be viewed as a simplified model problem to the governing equations of
the fluid flow, i.e. Navier–Stokes equations. This makes numerical prediction of the solution of
the convection–diffusion equation very important in computational fluid dynamics.

1.1. Convection–diffusion problems

A steady convection–diffusion equation is given by

ā ·∇u(x̄)−D∇2u(x̄)= f (x̄), x̄ ∈�⊂Rd (1)
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and the general boundary conditions are

�1u(x̄)+�2∇u(x̄)=g(x̄), x̄ ∈�� (2)

where u(x̄) is the unknown to be computed, d is the dimension of the problem, � is a bounded
domain in Rd , �� is the boundary of �, D is the diffusion coefficient, ā=(a1, . . . ,ad) is the
convection coefficient, ∇ =e j�/�xe j is gradient operator, ∇2=�2/�xe j �xe j , �1 and �2 are known
constants and f (x̄) and g(x̄) are some known functions.

2. RADIAL BASIS FUNCTION (RBF) APPROXIMATION OF OPERATORS

A function � :Rd →R is called radial provided there exists a univariate function � : [0,∞)→R

such that �(x̄)=�(r), where r =‖x̄‖ and ‖·‖ is some norm on Rd . RBFs are well known for
approximating multivariate functions, especially from a sparse and scattered set of data.

Kansa [1] has initiated the use of RBF interpolation in the global collocation methods for solving
partial differential equations. Owing to the global nature of the method, the resultant linear system
was full and highly ill-conditioned. Various approaches, namely domain decomposition, precon-
ditioning and the use of compactly supported RBFs have been experimented to circumvent these
difficulties. Recently, an RBF-based local method has been proposed by Wright and Fornberg [2].
The localization approach given in Wright and Fornberg [2] has been successfully extended by
Chandhini and Sanyasiraju to steady convection–diffusion problems [3] and to unsteady incom-
pressible Navier–Stokes equations [4]. To understand the development of the proposed upwind
schemes, the local RBF scheme [3] is briefly described here.

Let L be the convection–diffusion operator given by ā ·∇−D∇2 and n be the total number
of nodes in the discretized domain. Also assume that x̄i be any point from the domain. Define
Si ={x̄1, . . . , x̄ni } as a neighborhood of x̄i consisting of ni (	n) nodes. To approximate Lu(x̄i )
over the nodes from Si , let it be represented as a linear combination of u at the points of Si ,
given by

Lu(x̄i )≈
ni∑
j=1

c ju(x̄ j ) (3)

Then, the computation of the weights c j gives the required approximation to Lu(x̄i ). To proceed
further, also consider the Lagrange representation of an interpolant s(x̄) of u(x̄) given by

s(x̄)=
ni∑
j=1

� j (x̄)u(x̄ j ) (4)

where � j (x̄)’s are the Lagrange functions that satisfy the cardinal conditions

� j (x̄k)=� jk, j,k=1,2, . . . ,ni (5)

Applying the operator L to the Lagrange representation of RBF interpolant (4) gives

Lu(x̄i )≈Ls(x̄i )=
ni∑
j=1

L� j (x̄i )u(x̄ j ) (6)
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Comparing Equations (3) and (6), c j ’s can be given as

c j =L� j (x̄i ), j =1, . . . ,ni (7)

Therefore, to obtain each Lagrange function � j in (4), an RBF based interpolation problem is
developed. That is, each � j is approximated as

� j (x̄)≈
ni∑
k=1

� jk�(‖x̄− x̄k‖)+
l∑

k=1
� jk pk(x̄), j =1,2, . . . ,ni (8)

where �(‖·‖) is some radial function, {p j (x̄)}lj=1 is a basis for �d
m (space of all d-variate

polynomials with degree �m) and l is the dimension of �d
m . The weights � jk and � jk are obtained

by imposing the cardinal conditions (5) and orthogonality conditions

ni∑
j=1

� j pk(x̄ j )=0, k=1, . . . , l (9)

on the interpolant (8). From the interpolation problem (8)–(9), by making use of the symmetry of
the interpolation matrix and some simple properties of the determinants, a general form for � j (x̄)
is obtained (refer [3]) and used in Equation (7) which leads to(

N p

pT 0

)(
c̄

�̄

)
=(LB(x̄i )) (10)

where Ni, j =�(‖x̄i − x̄ j‖), i, j=1, . . . ,ni , pi, j = p j (x̄i ), j =1, . . . , l and i=1, . . . ,ni , �̄, a dummy
vector corresponding to the vector �̄ in (8) and B(x̄) is given by

B(x̄)=[�(‖x̄− x̄1‖)�(‖x̄− x̄2‖) · · ·�(‖x̄− x̄ni ‖) | p1(x̄)p2(x̄) · · · pl(x̄)]T (11)

Therefore, the weights c j ’s in (3) are computed using (10) and (11). It is also clear from the
development of the final linear system (10) that though it is dense, the size of (10) is only ni ,
which is very much smaller than the size (n) of the global RBF collocation system. This makes
the system more stable for wide range of ε. Further, only the right-hand side of (10) depends
on the operator L, for which the weights are to be computed. This optimizes the computation if
weights have to be computed for many operators with the same distribution of nodes, as in the
case of non-linear equations.

Franke [5] has made a comprehensive comparison of about seven groups consisting of about 30
interpolation methods on six different test functions and found that performance of multiquadric
(MQ) is the most impressive and consistently performed better in terms of accuracy. Therefore,
the MQ function developed by Hardy [6] and defined as

�(x̄)=
√
1+ε2‖x̄‖2 (12)

where ε>0 has been used in all the computations presented in the subsequent sections.
The numerical computation of the solution of the convection–diffusion problem, described in

(1)–(2) using the above described RBF method, becomes very challenging, like any other conven-
tional methods, when the convective process is dominant over diffusion. That is, the dimensionless
parameter that measures the relative strength of the diffusion (D) over convection is very small.
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In such situations, numerical approximations get contaminated due to the spurious oscillations and
numerical diffusion. Upwind approximation is one of the important concepts, which has been used
in the conventional schemes such as finite difference, finite element and finite volume methods to
suppress the ‘wiggles’ when convection is dominant. All upwind techniques take into account the
direction of the velocity. It is known that in a strong convective problem, the center node receives
more influence from the upstream side than from the downstream. Therefore, in one-dimensional
problems, optimal upwinding is straightforward to implement as the velocity, either positive or
negative, is always in the coordinate direction. However, the implementation is very complex in
multi-dimensional problems. Conventionally, the upwind concept in multi-dimensional problems
is implemented independently for each coordinate direction. That is, the partial derivatives are
approximated in each coordinate direction independently over a set of nodes chosen based on the
sign of the velocity component of that particular direction. However, such upwind techniques are
prone to crosswind diffusion.

3. UPWIND SCHEMES BASED ON THE EXACT VELOCITY DIRECTION

It is evident that, in higher-dimensional problems, the sense of the vector ā in (1) need not coincide
with any particular coordinate direction. This suggests that the computational molecule over which
the upwind has to be applied should be chosen based on the exact velocity direction and not by
separately looking at the velocity components. Therefore, designing upwind schemes for multi-
dimensional problems is not straightforward for the classical grid-based schemes such as finite
difference, finite element or finite volume. Owing to the grid-free nature of the RBF local scheme
[3], it is possible to incorporate the upwind strategy effectively in the actual velocity direction.
In the sections to follow, two upwind techniques based on the exact velocity direction have been
presented and their validation over some convection-dominated convection–diffusion problems is
also demonstrated.

3.1. Upwind scheme-I (U-I)

In this scheme, only the upwind nodes from the local support domain, Si for each nodal point
x̄i , are used to approximate the derivatives. The upwind nodes are the upstream nodes from the
support domain selected by taking a line passing through the point x̄i and normal to the velocity
vector. That is, as given in Figure 1(a), nodes denoted by ‘o’ in the support domain of x̄i are
chosen to approximate the derivatives.

3.2. Upwind scheme-II (U-II)

For moderate values of the diffusion coefficient D as given in (1), the central support (points are
chosen from all directions) gives good results, but deviates substantially from the exact solution
for small values of D. By taking this into account an adaptive upwind scheme has been used, in
which the local support for the node x̄i is shifted in the opposite direction of the flow as shown in
Figure 1(b). This local shift has been implemented adaptively based on the value of the local Peclet
number P̄e= ādc/D, where ā is the velocity vector and dc the average nodal spacing. Depending
on the magnitude of the local Peclet number at the node x̄i , the corresponding support domain will
be shifted toward the upwind direction. Since the upstream direction, �̄i , is the opposite direction of
ā, it can be computed by taking �̄=−ā/‖a‖. Then the local support domain is shifted to a distance
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Figure 1. Local support for: (a) upwind scheme-I and (b) upwind scheme-II.

ds in the direction �̄. The distance ds is computed using ds=	 ·r , where 	=coth‖P̄e‖−1/‖P̄e‖
and r is the radius of the support domain. It can be seen from the definition of 	 that

	 → 0 as |P̄e|→0

	 → 1 as |P̄e|→∞ (13)

Therefore, for large values of Peclet numbers, the proposed upwind scheme chooses a full upwind
support domain (the magnitude of the shift ds is equal to the radius of the central support domain).
On the other hand for small and moderate values of the local Peclet number, the magnitude of
the shift ds will be between zero and r (radius of the central support domain). This makes the
support domain, for each node x̄i , adaptive. A similar upwind scheme was used by [7]; however,
the interest there was to apply the same in polynomial point collocated method and concluded that
the scheme works well when large number of grid points were used. The purpose of the present
scheme is to make it local by minimizing the number of nodes in the local support domain Si .

3.3. Numerical implementation

To discretize the convection–diffusion equation (1) at each node x̄i , i=1, . . . ,n

1. Start with a central support Si where the nodes are chosen from all directions with equal
weightage.

2. Find the upwind support domain S′
i from the central support domain Si using the procedure

U-I or U-II.

Procedure U-I

• Find the normal to the vector ā which passes through x̄i .
• Select the nodes on the upstream side to the normal from Si and store them in S′

i .• Discretize the convection part ā ·∇ over the support S′
i and compute the weights c′

j by solving
the linear system in (10).

• Discretize the diffusion part ∇2 over the support Si and again compute the weights c′′
j by

solving the linear system in (10).
• The weights for the full convection–diffusion operator c j are then obtained by c j =c′

j +c′′
j if

x̄i j ∈ Si or c j =c′′
j if x̄i j ∈ S′

i .
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Procedure U-II

• Compute

◦ The local Peclet number, P̄e= ādc/D
◦ Upstream direction �̄=−ā/‖a‖
◦ The distance ds=	·r , where 	=coth‖P̄e‖−1/‖P̄e‖

• Select the upwind support domain S′
i with a center node x̄ ′

i , where x̄ ′
i is at a distance ds in

the direction �̄ from the node x̄i .
• Compute the weights c j for the full convection–diffusion operator using the support S′

i .

After computing the weights using the above-mentioned procedure, the resultant algebraic system
is solved using any direct or iterative method.

4. RESULTS AND DISCUSSION

In this section, numerical results obtained using the RBF local scheme with the proposed upwind
techniques U-I and U-II for linear convection–diffusion problems have been analyzed. To demon-
strate the implementation of the grid-free upwind schemes in multi-dimensional problems, two
dimensional equivalents of (1) have been chosen. MQ RBF has been used in all the simulations
and the shape parameter ε has been varied to observe its effect on the accuracy of the solutions.
The example problems have been defined over a unit square and both uniform and scattered nodal
distributions, as shown in Figure 2, are used to obtain the solutions. The number of supporting
nodes in Si has been fixed as ni =5 for both the distributions. A standard 5-point stencil has been
considered for the uniform case, whereas in the case of scattered distribution, nodes are chosen
by fixing the radius of the support. The radius has been fixed such that a minimum of five nodes
survive in the neighborhood of every centre node, x̄i . The results obtained have been compared
with the results of the conventional upwind method, hereafter denoted as U-0, wherein the upwind
is based on the sign of the velocity component for each coordinate direction independently. For
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0.4

0.6

0.8

1

Figure 2. Scattered distribution of 480 nodes.
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example, when kth component of ā (at x̄i ) >0, i.e. ak >0,k=1, . . . ,d , x̄ j ∈ Si is chosen to be in
the upwind support, if x jk < xik,k=1, . . . ,d (vice versa for ak <0). The error in the approximate
solution with respect to analytical solution has been computed using ∞-norm (err∞) which is
given by

err∞ =max(|uapproxi −uanali |, i=1, . . . ,n) (14)

Three model problems, two with constant and another with variable velocity components, have
been chosen for the purpose of validation. For all the problems, the boundary conditions and the
source terms f are taken from the corresponding analytical solutions.

4.1. Example

Consider the problem (1)–(2) with ā=(1,0) and analytical solution

u(x, y)=ex/2D sin
y[2e−1/2D sinh�x+sinh�(1−x)]/sinh� (15)

where �2=
2+0.25/D2.
In Example 4.1, the y-component of the velocity vector ā is zero and hence the direction of the

velocity field is parallel to the x-axis. Therefore, the upwind schemes U-0 and U-1 coincide with
each other and produce identical results.

The solutions are obtained by varying global Peclet numbers (Peg) defined by Peg=Ul/D,
where U is the characteristic velocity and l is the characteristic length (h for uniform and dc
for scattered nodal distributions). Figure 3 compares the errors with respect to the global Peclet
numbers for the three upwind techniques U-0, U-I and U-II. The error plots with uniform and
scattered nodal distributions are included in this figure as (a) and (b), respectively. As expected the
error plots for U-0 and U-1 coincide with both uniform and scattered nodal distributions. However,
the corresponding plot with U-II has some very interesting features. It is clear from Figure 3(a),
that for the computations over uniform nodal distribution, the scheme U-II gave more accurate
solutions over the other two until Peg is about 50. But, for large Peg the upwind schemes U-0
and U-I seem to be more accurate. However, the accuracy improved substantially with the scheme
U-II for small Peclet numbers Peg, which can be achieved by reducing the step length. One of the
main reasons for this improvement in the accuracy of the solution is due to the adaptive nature
of U-II.
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Figure 3. Comparison of error plots for Example 4.1: (a) Uniform and (b) Scattered nodal distributions.
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Figure 4. Comparison of error plots for Example 4.2: (a) Uniform and (b) Scattered nodal distributions.

In Figure 3(b) error plots with respect to Peg are presented. In these computations, the scattered
nodal distribution shown in Figure 2 has been used. For the scattered case, clearly, U-II dominates
over the other two upwind techniques by showing a substantial improvement in the solution as Peg
increases. In this case, near optimal shape parameter (εopt) has been used for all values of Peg.
For example, ε=10, 50 and 5.5 are found to be optimal for Peg=0.58, 5.8 and 58, respectively.

4.2. Example

In this example, parameter ā has been chosen as (−2,2) with analytical solution

u(x, y)=[e2(1−x)/D+e2y/D−2]/(e1/D−1) (16)

The error plots by varying Peg are presented in Figure 4 for both uniform and scattered nodal
distributions. In this case, the results obtained using U-II are highly superior to the other two
upwind schemes U-0 and U-I when uniform nodes have been used. For example, with n=11×11,
err∞ with U-II is about 10(−86) (read as 10−86), whereas the corresponding errors using U-0
and U-I are in the order of 10(−05). In this example also, both U-0 and U-I solutions are almost
same for the uniform case, though the support domains need not be the same. This coincidence
in the solution may be due to the use of uniform distribution of the nodes. For scattered node
distribution, Example 4.2 also shows a similar trend in the accuracy of the solution, as that of
Example 4.1 for U-0 and U-II. However, the solution obtained using U-I is slightly better than
U-0 and the accuracy of U-I is between U-0 and U-II. These two examples demonstrate that the
scheme U-II (adaptive local support domain) is an effective method compared with U-0 and U-I
to solve the convection-dominated problems.

To analyze the upwind schemes further, a third example has been chosen with a variable velocity
field unlike the other two problems.

4.3. Example

Consider the problem with variable coefficient ā=(sin x,cos x) with analytical solution

u(x, y)=e−1/D
[
sinh

1−x

D
sin y+sinh

1− y

D
sin x

]
(17)
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Figure 5. Surface plots of the solutions for Example 4.3: (a) exact solution; (b) U-0; (c) U-I; and (d) U-II.

Boundary conditions and the source term f have been taken from the analytical solution (17).
In Example 4.3, the solutions, using all three techniques U-0, U-I and U-II, have been obtained
for D=0.001 and the corresponding solutions are presented in the Figure 5. It is very interesting
to note that the upwind scheme U-II is able to resolve the boundary layer very accurately when
compared with the other two. Figure 6 compares the err∞ obtained with U-0, U-I and U-II. The
better accuracy with U-II, particulary when the nodal distribution is finer, is again reflected in
these error plots.

5. CONCLUSIONS

To deal with the convection-dominated problems, two upwind schemes based on the exact velocity
field have been compared and validated over various two-dimensional examples problems. Advan-
tage of the RBF scheme as a pure grid-free local scheme has been exploited to incorporate the
different upwind strategies effectively. The results obtained using these techniques show that the
adaptive upwind technique U-II gives better accuracy and is able to resolve the boundary layers
more accurately than the other two. The improvement in the accuracy of the solutions using U-I
over U-0 is marginal. The concept used in the scheme U-II to make it adaptive is simple and
straightforward to adopt for multi-dimensional problems. Further, it has been observed that the
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Figure 6. Comparison of error plots for Example 4.3.

accuracy also depends on RBF shape parameter ε. However, a systematic approach for the optimal
choice of ε is still an open problem, though some heuristic approaches exist to date.
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